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1. INTRODUCTION
Our work is motivated by two observations. First, the

per-byte energy consumption of o↵-chip data movement for
an exascale system is projected to be two orders of magni-
tude higher than on-chip data movement [4]. Second, sci-
entists run increasingly high-fidelity simulations, which pro-
duce large amounts of data for visualization and analysis.
Consequently, the I/O subsystem is expected to consume a
significant chunk of the power budget available for a super-
computer.

Earlier attempts to address the above include temporal
sampling which runs the risk of missing out on important
events. More recently, researchers have proposed in-situ
techniques as an alternative where the visualization is per-
formed alongside the simulation. In this study, we seek to
quantify the savings in performance, power, and energy from
adopting in-situ visualization. We improve upon previous
work by Adhinarayanan et al. [1] by running a real climate
simulation application known as MPAS-O [3] on a server-
grade node and by looking at the power consumption of
individual system components including the disks. We also
present preliminary results obtained from a 128-node clus-
ter.

2. METHODOLOGY
In this section, we describe the application, the hardware,

and the power measurement methodology used in this study.

2.1 Application
We use the ocean component of Modeling for Prediction

Across Scale (MPAS-Ocean), which is a climate simulation
application. This application solves an unstructured mesh
problem, then calculates the Okubo-Weiss metric which helps
in identifying eddies in the ocean (shown in Figure 1). We
run the simulation for a simulated period of one month us-
ing a 240 km grid size. The images are produced by the
Paraview Cinema framework [2].

For the cluster-level experiment, we ran the simulation
using a 60 km grid size for six simulated months. We use
temporal sampling on both visualization pipelines with the
output written once per simulated day.
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Figure 1: Visual representation of eddies in the ocean using
the Okubo-Weiss metric

2.2 Hardware
Our experiments are run on a node with two Intel Xeon

E5-2665 processors, 64GB of RAM and a 500GB, 7200rpm
Seagate hard disk.

For the cluster-level experiment, we used 128 nodes of the
Caddy supercomputer at LANL. Each node consists of two
8-core Intel E5-2670 Sandy Bridge CPU and 64 GB of RAM.
For storage, we used a 5-node cluster running Lustre file
system and configured as follows: 1 master node, 2 metadata
server (MDS) and 2 object storage servers (OSS).

2.3 Power Measurement Methodology
We measure node power consumption using a WattsUp

Pro power meter. The processor’s and DRAM’s power con-
sumption is measured using Intel’s RAPL interface. The
power consumption of the disk is modeled using well-established
statistical regression techniques using iostat statistics as the
input parameters. The model used in this poster paper is
presented in Figure 2.

We used a cage power meter to measure the power con-
sumption of ten nodes of the compute cluster. This was later
extrapolated to 128 nodes. The power of the storage cluster
was measured using a Raritan intelligent power distribution
unit at a resolution of one reading per two minutes.

3. RESULTS
Figure 3 shows that even though the in-situ pipeline con-

sumes 3% more power than the post-processing pipeline, it



●

●

●

●

●

● ● ●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

1

2

3

4

2 3 4
0.53 log(BW) + 0.06 log(IOPS) − 1.33

Po
we

r (
W

)

Figure 2: Modeling the dynamic power consumption of disk

actually ends up saving more than 4% energy. This is due
to the 6.7% lower execution time (210 s for post-processing
vs 196 s for in-situ) from the reduced I/O wait time. The
energy savings is expected to be significant for applications
with larger proportion of disk access time. The breakdown
on energy consumption (Figure 3) shows that the actual en-
ergy saved from the disk subsystem is negligible. That is,
most of the savings come from avoiding system idling.
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Figure 3: Power and Energy consumption of in-situ and
post-processing pipelines

Discussion: Despite the modest improvements to energy
and performance on a single-node, we expect that transition-
ing to in-situ techniques will have a notable impact on su-
percomputers, even for applications such as MPAS-O. First,
the I/O wait time, which contributes to energy consumption
by means of idle compute resources, is expected to be higher.
This is because the storage subsystem is separated from the
compute subsystem by a network. Second, there is an ad-
ditional energy consumption from data movement through
the network. Third, while the storage component (i.e., the
hard disk) in the single-node experiment is shared with the
compute node, in a cluster it requires its own dedicated set
of resources such as CPU, memory, cooling, etc. This addi-
tional overhead for storage is expected to increase the power
and energy consumption. To concretely illustrate the above,
we performed our experiments on LANL’s Caddy supercom-

puter. The post-processing pipeline consumed 42.7MJ of
energy and the in-situ pipeline consumed 19.1MJ of energy,
which corresponds to an energy saving of 55%.

To illustrate the other advantages further, we perform the
following experiment. In-situ pipeline uses 97.5% less stor-
age than the post-processing pipeline. That is, the number
of storage nodes can be reduced by 97.5%. Assuming that
typically 10% of the nodes in a HPC data center is reserved
for storage and assuming that storage nodes consume about
the same power as compute nodes, we have a 10% higher
budget for the compute nodes. A 10% higher budget can re-
sult in up to 6.3% improvement in performance for MPAS-O
using Intel RAPL’s power capping feature as shown in Fig-
ure 4 .
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Figure 4: Impact of 10% additional power budget for pro-
cessors on performance

4. CONCLUSION
In this work we have demonstrated that in-situ techniques

could reduce energy consumption (by reducing wait time),
reduce power (by using fewer storage nodes), and improve
performance (by reducing I/O wait time and by making
more power available for compute nodes). We will expand
this study with more applications in a large-scale system in
the near future.
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